3.1134 \(\int \frac{x^4}{(a+b x^4)^{3/4}} \, dx\)

Optimal. Leaf size=83 \[ \frac{\sqrt{a} x^3 \left (\frac{a}{b x^4}+1\right )^{3/4} \text{EllipticF}\left (\frac{1}{2} \cot ^{-1}\left (\frac{\sqrt{b} x^2}{\sqrt{a}}\right ),2\right )}{2 \sqrt{b} \left (a+b x^4\right )^{3/4}}+\frac{x \sqrt [4]{a+b x^4}}{2 b} \]

[Out]

(x*(a + b*x^4)^(1/4))/(2*b) + (Sqrt[a]*(1 + a/(b*x^4))^(3/4)*x^3*EllipticF[ArcCot[(Sqrt[b]*x^2)/Sqrt[a]]/2, 2]
)/(2*Sqrt[b]*(a + b*x^4)^(3/4))

________________________________________________________________________________________

Rubi [A]  time = 0.0331245, antiderivative size = 83, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 15, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.333, Rules used = {321, 237, 335, 275, 231} \[ \frac{x \sqrt [4]{a+b x^4}}{2 b}+\frac{\sqrt{a} x^3 \left (\frac{a}{b x^4}+1\right )^{3/4} F\left (\left .\frac{1}{2} \cot ^{-1}\left (\frac{\sqrt{b} x^2}{\sqrt{a}}\right )\right |2\right )}{2 \sqrt{b} \left (a+b x^4\right )^{3/4}} \]

Antiderivative was successfully verified.

[In]

Int[x^4/(a + b*x^4)^(3/4),x]

[Out]

(x*(a + b*x^4)^(1/4))/(2*b) + (Sqrt[a]*(1 + a/(b*x^4))^(3/4)*x^3*EllipticF[ArcCot[(Sqrt[b]*x^2)/Sqrt[a]]/2, 2]
)/(2*Sqrt[b]*(a + b*x^4)^(3/4))

Rule 321

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n + 1)*(a + b*x^n
)^(p + 1))/(b*(m + n*p + 1)), x] - Dist[(a*c^n*(m - n + 1))/(b*(m + n*p + 1)), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rule 237

Int[((a_) + (b_.)*(x_)^4)^(-3/4), x_Symbol] :> Dist[(x^3*(1 + a/(b*x^4))^(3/4))/(a + b*x^4)^(3/4), Int[1/(x^3*
(1 + a/(b*x^4))^(3/4)), x], x] /; FreeQ[{a, b}, x]

Rule 335

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Subst[Int[(a + b/x^n)^p/x^(m + 2), x], x, 1/x] /;
FreeQ[{a, b, p}, x] && ILtQ[n, 0] && IntegerQ[m]

Rule 275

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = GCD[m + 1, n]}, Dist[1/k, Subst[Int[x^((m
 + 1)/k - 1)*(a + b*x^(n/k))^p, x], x, x^k], x] /; k != 1] /; FreeQ[{a, b, p}, x] && IGtQ[n, 0] && IntegerQ[m]

Rule 231

Int[((a_) + (b_.)*(x_)^2)^(-3/4), x_Symbol] :> Simp[(2*EllipticF[(1*ArcTan[Rt[b/a, 2]*x])/2, 2])/(a^(3/4)*Rt[b
/a, 2]), x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && PosQ[b/a]

Rubi steps

\begin{align*} \int \frac{x^4}{\left (a+b x^4\right )^{3/4}} \, dx &=\frac{x \sqrt [4]{a+b x^4}}{2 b}-\frac{a \int \frac{1}{\left (a+b x^4\right )^{3/4}} \, dx}{2 b}\\ &=\frac{x \sqrt [4]{a+b x^4}}{2 b}-\frac{\left (a \left (1+\frac{a}{b x^4}\right )^{3/4} x^3\right ) \int \frac{1}{\left (1+\frac{a}{b x^4}\right )^{3/4} x^3} \, dx}{2 b \left (a+b x^4\right )^{3/4}}\\ &=\frac{x \sqrt [4]{a+b x^4}}{2 b}+\frac{\left (a \left (1+\frac{a}{b x^4}\right )^{3/4} x^3\right ) \operatorname{Subst}\left (\int \frac{x}{\left (1+\frac{a x^4}{b}\right )^{3/4}} \, dx,x,\frac{1}{x}\right )}{2 b \left (a+b x^4\right )^{3/4}}\\ &=\frac{x \sqrt [4]{a+b x^4}}{2 b}+\frac{\left (a \left (1+\frac{a}{b x^4}\right )^{3/4} x^3\right ) \operatorname{Subst}\left (\int \frac{1}{\left (1+\frac{a x^2}{b}\right )^{3/4}} \, dx,x,\frac{1}{x^2}\right )}{4 b \left (a+b x^4\right )^{3/4}}\\ &=\frac{x \sqrt [4]{a+b x^4}}{2 b}+\frac{\sqrt{a} \left (1+\frac{a}{b x^4}\right )^{3/4} x^3 F\left (\left .\frac{1}{2} \cot ^{-1}\left (\frac{\sqrt{b} x^2}{\sqrt{a}}\right )\right |2\right )}{2 \sqrt{b} \left (a+b x^4\right )^{3/4}}\\ \end{align*}

Mathematica [C]  time = 0.0165389, size = 62, normalized size = 0.75 \[ \frac{x \left (-a \left (\frac{b x^4}{a}+1\right )^{3/4} \, _2F_1\left (\frac{1}{4},\frac{3}{4};\frac{5}{4};-\frac{b x^4}{a}\right )+a+b x^4\right )}{2 b \left (a+b x^4\right )^{3/4}} \]

Antiderivative was successfully verified.

[In]

Integrate[x^4/(a + b*x^4)^(3/4),x]

[Out]

(x*(a + b*x^4 - a*(1 + (b*x^4)/a)^(3/4)*Hypergeometric2F1[1/4, 3/4, 5/4, -((b*x^4)/a)]))/(2*b*(a + b*x^4)^(3/4
))

________________________________________________________________________________________

Maple [F]  time = 0.027, size = 0, normalized size = 0. \begin{align*} \int{{x}^{4} \left ( b{x}^{4}+a \right ) ^{-{\frac{3}{4}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^4/(b*x^4+a)^(3/4),x)

[Out]

int(x^4/(b*x^4+a)^(3/4),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{4}}{{\left (b x^{4} + a\right )}^{\frac{3}{4}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4/(b*x^4+a)^(3/4),x, algorithm="maxima")

[Out]

integrate(x^4/(b*x^4 + a)^(3/4), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{x^{4}}{{\left (b x^{4} + a\right )}^{\frac{3}{4}}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4/(b*x^4+a)^(3/4),x, algorithm="fricas")

[Out]

integral(x^4/(b*x^4 + a)^(3/4), x)

________________________________________________________________________________________

Sympy [C]  time = 0.921345, size = 37, normalized size = 0.45 \begin{align*} \frac{x^{5} \Gamma \left (\frac{5}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} \frac{3}{4}, \frac{5}{4} \\ \frac{9}{4} \end{matrix}\middle |{\frac{b x^{4} e^{i \pi }}{a}} \right )}}{4 a^{\frac{3}{4}} \Gamma \left (\frac{9}{4}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**4/(b*x**4+a)**(3/4),x)

[Out]

x**5*gamma(5/4)*hyper((3/4, 5/4), (9/4,), b*x**4*exp_polar(I*pi)/a)/(4*a**(3/4)*gamma(9/4))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{4}}{{\left (b x^{4} + a\right )}^{\frac{3}{4}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4/(b*x^4+a)^(3/4),x, algorithm="giac")

[Out]

integrate(x^4/(b*x^4 + a)^(3/4), x)